

INDEXABLE

- · Very high productivity on 5-axis machines with perfect synchronization between the two spindles
- · Indexable type is mainly used for larger than Module 2.5
- Easy to apply and replace inserts

- · Quintessential machining method for external gears
- High productivity with indexable type hobs
- · Smooth cutting due to helical layout

- Mainly applied to wind power, construction
- machinery and shipbuilding industries

HEAD CHANGEABLE

- The head-changeable type is mainly applied to Module 0.4-2.5
- · High-precision machining
- · Higher productivity and tool life compared to HSS tools in machining high hardness materials
- · Hard power skiving is possible after heat treatment

- · Mainly applied to internal gear machining
- · Also applied to external gear machining with interference
- · Conventional method, but highly flexible
- · Compared to Solid HSS, it is more convenient to use, with better productivity and longer tool life

Indexable

Power

Headchangeable Skiving Power Skiving

GEAR - OB

Monobody Hobs

Segment Hobs Advantages

GEAR GASH

External

Internal

Flange Type Gashers

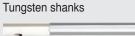
Worm Gear Gashers

Roughing and Finishing Double Helical Gear Cutters

Indexable Shapers

Head-changeable Shapers

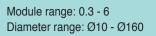
Rotor Screw Gashers



Various shank options

TGK

Steel shanks



TGK

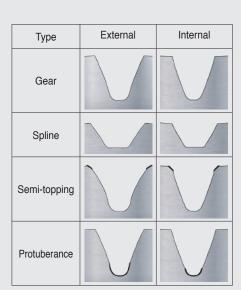
1. Shank Types

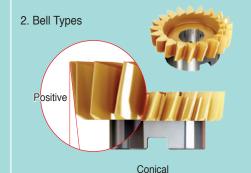
Solid Type Power Skiving

Indexable Power Skiving

• Module range: 2.5 - 10 • Diameter range: Ø63 - Ø315

Internal coolant





Insert without semi-topping

Cylindrical

Advantages of Power Skiving

Replaces Conventional Gear Machining

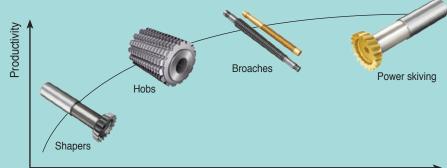
Power skiving replaces conventional gear machining like broaching, hobbing and shaping

Broaches

- Only for through-type gears
- · Less flexible
- · Difficult to handle

Hobs

- · Only for external gears
- Unusable in close to shoulder machining


Shapers

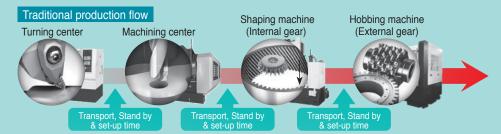
- · Mainly for internal gears
- · Longer cycle time
- Not suited for machining hardened materials

Power skiving replaces most of the existing gear manufacturing processes

High Productivity

Power skiving reduces considerable cycle times when compared to conventional gear machining methods

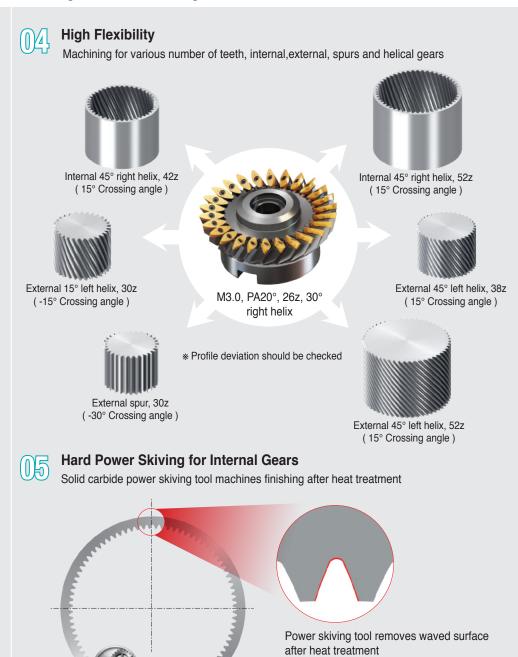
One Machine for Turning, Milling and Gear Machining

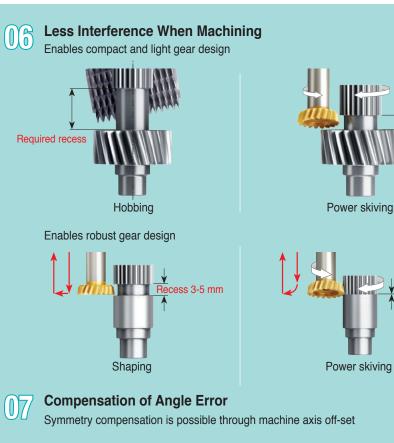

Complete gear component machining in a single set-up multitask machine that shortens production time, improves gear quality class while reducing handling and logistics costs

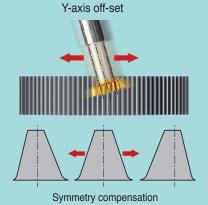
Time Saving

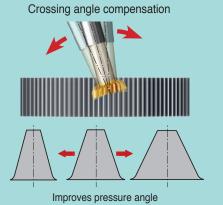
Tool type

· When power skiving using a multitask machine: all cutting is done on one machine




Without power skiving: workpiece should be moved to 3-4 different machine types





Advantages of Power Skiving

Less required recess

INDUSTRY 4.0

GEAR - OB **Monobody Hobs**

Module range: 3 - 10

Diameter range: Ø80 - Ø220

• High-precision and great quality due to the monobody design

• Helical layout makes for smooth cutting

High productivity

Laydown insert type

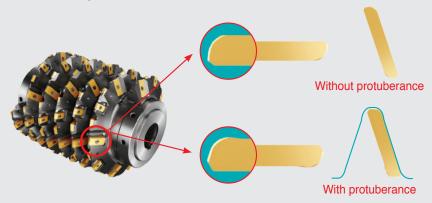
TGI-F

- · High accuracy insert tolerance
- High productivity

Tangential insert type

TGI-R

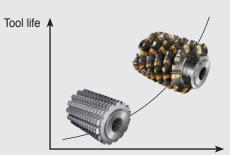
- Economical 4-cutting edge insert
- · Low cutting load



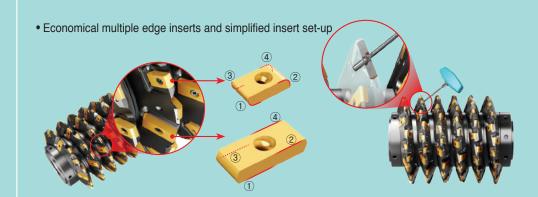
GEAR TaeguTec Advantages of Indexable hobs

• Generate various profiles with inserts on one hob

- Helical layout enables smooth cutting
- Lower cutting load with half effective over full effective solid type hobs



Indexable type hobs (half effective)



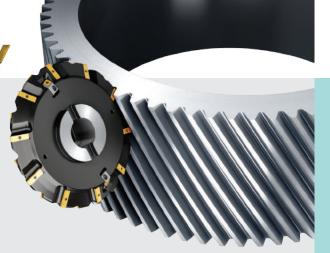
Solid type hobs (full effective)

- Higher productivity compared to solid HSS hobs
- Longer tool life compared to solid HSS hobs

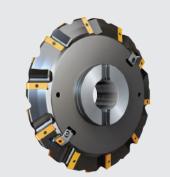
Productivity

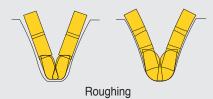
Case Study Hobs

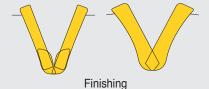
	Conventional (HSS hobs)	TaeguTec (Indexable hobs)
Cutter	D100	TGHC D300-100N-M10-AY
V (m/min)	25	150
Feed (mm/WR*)	0.8	5
Effective teeth	9	7
Coolant	dry	dry
Running time (min)	770	72


* WR (workpiece revolution)

GEAR GARAGE

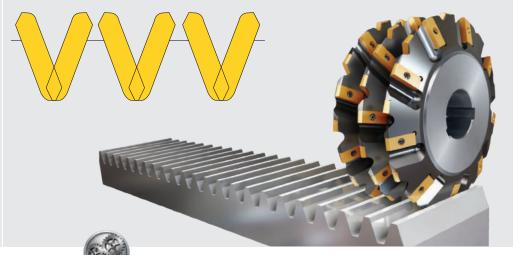

Disc Type Single Gashers


- For spurs and helical gears
- Long tool life due to high performance insert grades and geometries
- High-precision machining



External Gear Single Gashers

Depending on the cutter design, various insert type combinations are possible



Rack Gear Gashers

- High stability cutting performance due to optimized insert geometry and lay out
- Roughing and finishing of small modules: module 2 and up
- Smooth chip evacuation

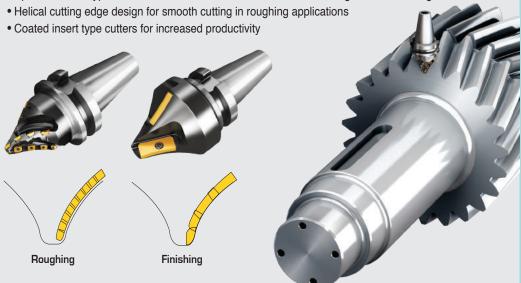
Duplex Gear Gashers

- High metal removal rate solution
- For large internal and external gear wheels
- Tailor-made for special gear profiles

Worm Gear and Threading

- Roughing and finishing applications
- High productivity
- Head-changeable and indexable types
- High-precision profiles

Indexable type



Double Helical Gear Cutters

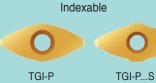
• Special endmill type cutters to resolve the interference between the right and left helix gears

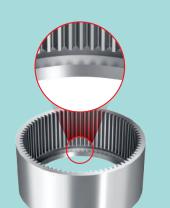
Spline/Spur Gear Cutters

- Very stable cutting due to optimized insert geometry and lay out
- Roughing and finishing of small modules: module 1 and up
- Smooth chip evacuation

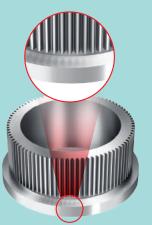
Shaper Cutters

- For roughing and finishing applications
- High productivity
- High-precision involute curve profiles





TGSB





External gearing with a shoulder

Herringbone gearing

Rotor Screw Gashers

- Roughing and semi-finishing applications
- Indexable inserts on both male and female gashers
- Minimum profile deviation due to the optimized design

Female Gashers

Male Gashers

(4-cutting edges)

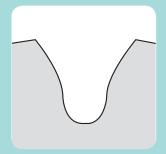
SNB 13-CV Double-sided convex insert (4-cutting edges)

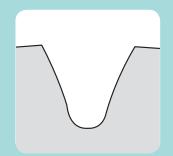
LNA 13-ML

L-type tangential insert (4-cutting edges)

TOP-SLOT insert (4-cutting edges)

SNA 13-ML Tangential insert (8-cutting edges)




Request Form

Profile Type

> External with Protuberance

> External without Protuberance

> Internal without Protuberance

Tool Specifications for Technical Quotation

Contact

		Date: _	
	Order/Quo	tation Alrea	idy in
Yes		No	
Order- / 0	Quotation-	No.	

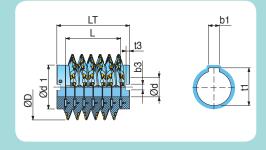
Machine tool builder / Type			Powe	er (kW)	
Revolution speed (rpm)		Spindle		Table	
Internal coolant					
HSK-T	ISO 12164-3	100 🗆	80 🗆	63 🗆	50 🗆
Polygon ISO 26623-1		C8X □	C8 □	C6 □	C5 🗆
Special adaption					
Workpiece material					

TaeguTec Contact
Customer
Customer Contact

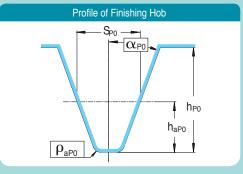
Module 0.4-2.5	Module 2.5-10

Workpiece Data		
Module	m [mm]	
Gear quality		
No. of teeth	Z	
Pressure angle	a [°]	
Helix angle	β [°]	
Flank direction	L/R	
Addendum modification coefficient	Х	
Tip diameter	da [mm]	
Root diameter	d _f [mm]	
Root radius	rfp [mm]	
Root form diameter	d _{Ff} [mm]	
Dimension over balls	Md [mm]	
Max. dimension over balls	M _{dmax} [mm]	
Min. dimension over balls	Mdmin [mm]	
Ball diameter	Dм [mm]	
Base tangent length over k meas. teeth	Wk [mm]	
Max. base tangent length	W _{kmax} [mm]	
Min. base tangent length	Wkmin [mm]	
No. of measuring teeth	k	
Stock for finishing	[mm]	
Basic rack profile		

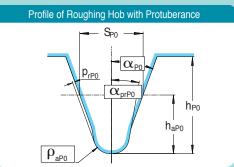
Workpiece Collision Dimensions				
	Externa	l Gear		
	20	L1 -	10	
	Interna	l Gear		
	20	<u>L1</u>	- 10	
D ₁	mm	L ₁		mm
D ₂	mm	L2		mm
		b		mm



Tool Specifications for Technical Quotation

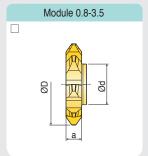

Contact	
TaeguTec Contact	
Customer	
Customer Contact	

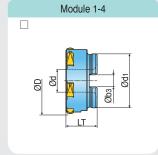
		Daic.	
	Order/Quot	tation Alrea	idy in
Yes		No	
Order-	/ Quotation-	No.	

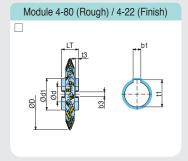

Tool		
Tool length	LT [mm]	
Usable length	L [mm]	
Keyway (axial/radial)	a/r	
Keyway width	b ₁ / b ₃ [mm]	
Keyway depth	t ₁ / t ₃ [mm]	
Module	m [mm]	
Outside diameter	D [mm]	
Bore diameter	d [mm]	
Hub diameter	d ₁ [mm]	
Quality class acc. to	[DIN 3968]	
Spiral direction	LH/RH	·
No. of starts		

Tool Profile Data			
Addendum	hapo [mm]		
Tooth thickness	Spo [mm]		
Tooth depth	hpo [mm]		
Pressure angle	Q PO [°]		
Tip radius	ρ _{aPO} [mm]		
Protuberance amount	p _{rPO} [mm]		
Protuberance angle	α prPO [°]		

Gear Tooth Modification		
Protuberance	No 🗆	Yes
Tip relief	No 🗆	Yes 🗆


Remark




Tool Specification for Technical Quotation

Contact	
TaeguTec Contact	
Customer	
Customer Contact	

		Date:		
Order/Quotation Already in				
Yes		No		
Order- / Quotation-No.				

External gear

m [mm]

a [°]

[DIN 3962]

Tool		
Outside diameter	D [mm]	
Mounting diameter	d [mm]	
Hub diameter	d ₁ [mm]	
Cutter width	a / LT [mm]	
Radial keyway (DIN 138)	b₃ [mm]	
Radial keyway (DIN 138)	t ₃ [mm]	
Axial keyway (DIN 138)	b ₁ [mm]	
Axial keyway (DIN 138)	t ₁ [mm]	

Radial keyway (DIN 138)	b₃ [mm]		Helix angle	β [°]	
Radial keyway (DIN 138)	t ₃ [mm]		Addendum modification coefficient	Х	
Axial keyway (DIN 138)	b ₁ [mm]		Tip diameter	da [mm]	
Axial keyway (DIN 138)	t ₁ [mm]		Root diameter	d _f [mm]	
			Root radius	ρ _{fP} [mm]	
Remark			Dimension over balls	Md [mm]	
iciiaik			Max. dimension over balls	M _{dmax} [mm]	
			Min. dimension over balls	Mdmin [mm]	
			Ball diameter	Dм [mm]	
		Base tangent length over k meas. teeth	W _k [mm]		
		Max. base tangent length	W _{kmax} [mm]		
		Min. base tangent length	W _{kmin} [mm]		
		No. of measuring teeth	k		
		Roughing/Finishing			
			Stock for finishing	[mm]	

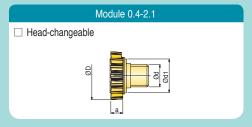
Gear quality

Basic rack profile

Workpiece Data

Internal gear

Pressure angle


Module No. of teeth

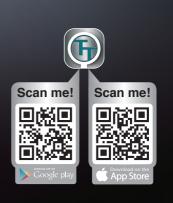
GEARSHAPE Request Form

Tool Specification for Technical Quotation

Contact	
TaeguTec Contact	
Customer	
Customer Contact	

		Date:	
Order/Quotation Already in			
Yes		No	
Order-	Quotation-N	0.	

Module 2.5-10			
□ Indexable insert type			


Tool		
Outside diameter	D [mm]	
Adaption diameter	d [mm]	
Hub diameter	d ₁ [mm]	
Cutter width	a / LT [mm]	
Keyway width	b [mm]	
Keyway depth	t [mm]	
Module	m [mm]	
No. of teeth	Zo	
Pitch diameter	do [mm]	
Addendum	hapo [mm]	
Dedendum	h _{fPO} [mm]	
Addendum modification	xo • m [mm]	
Pressure angle	α ο [°]	
Helix angle	βο [°]	
Flank direction	L/R	
Tip radius	ρ _{aPO} [mm]	
Base tangent length	Wko [mm]	
No. of measuring teeth	ko	

Workpiece Data			
	ol goor		
Module	Internal gear		
		m [mm]	
No. of teeth		Z	
Pressure angle		α _{po} [°]	
Helix angle		β [°]	
Flank direction		L/R	
Addendum modification coeffi	cient	Х	
Tip diameter		da [mm]	
Root diameter		d _f [mm]	
Dimension over balls		Md [mm]	
Max. dimension over balls		M _{dmax} [mm]	
Min. dimension over balls		Mdmin [mm]	
Ball diameter		Dм [mm]	
Base tangent length over k meas. teeth		W _k [mm]	
Max. base tangent length		W _{kmax} [mm]	
Min. base tangent length		Wkmin [mm]	
No. of measuring teeth		k	
Stock for finishing		[mm]	
Gear quality			
Basic rack profile			

- Cat.No: 6248240
- English Version: CT 07/2022
- ©TaeguTec LTD.